Mirada General
"El camino del aprendizaje por precepto es largo; por el ejemplo, corto y eficaz."
Lucio SénecaAcerca de este tutorial
El Filtro de Kalman es un tema fácil. Sin embargo, muchos tutoriales no son fáciles de entender. La mayoría requieren una amplia formación matemática que dificulta su comprensión. Además, la mayoría de los tutoriales carecen de ejemplos numéricos prácticos.
Decidí escribir un tutorial que se basa en ejemplos numéricos y proporciona explicaciones fáciles e intuitivas.
Algunos de los ejemplos son del mundo del radar, donde el filtrado de Kalman se usa ampliamente (principalmente para el seguimiento de objetivos), sin embargo, los principios que se presentan aquí se pueden aplicar en cualquier campo donde se requieran estimaciones y predicciones.
El tutorial incluye tres partes:
- Parte 1 una introducción al filtro de Kalman. Esta parte se basa en ocho ejemplos numéricos. No se requiere un conocimiento matemático previo. Todos los antecedentes matemáticos necesarios se proporcionan en el tutorial e incluyen términos como media, varianza y desviación estándar. Es así. Si lo desea, puede llamarlo "El filtro de Kalman para tontos". Después de leer la primera parte, podrá comprender el concepto del filtro de Kalman y desarrollar la "intuición del filtro de Kalman". También podrá diseñar un filtro Kalman unidimensional.
- Parte 2 filtro de Kalman multidimensional (filtro de Kalman en notación matricial). Es un poco más avanzado. La mayoría de las implementaciones del filtro Kalman de la vida real son multidimensionales y requieren conocimientos básicos de álgebra lineal (solo operaciones matriciales). La formación matemática necesaria también se proporciona en el tutorial. También se incluye la obtención matemática del filtro de Kalman y el modelado de sistemas dinámicos. Después de leer la segunda parte, podrá comprender las matemáticas detrás del filtro de Kalman. También podrá diseñar un filtro de Kalman multidimensional.
- Parte 3 Esta parte es para lectores avanzados, y requiere algunos conocimientos matemáticos, principalmente en el área de estadísticas. Actualmente, esta parte está en proceso de planificación. Se supone que incluye el filtro Kalman extendido, el filtro Kalman "Unscented", la implementación del filtro Kalman en diferentes aplicaciones de la vida real y mucho más.
Actualmente, todos los ejemplos numéricos se presentan en unidades métricas. Estoy planeando agregar la opción de unidades imperiales más tarde.
Acerca del autor
Me llamo Alex Becker. Yo soy de Israel. Soy un ingeniero con más de 15 años de experiencia en el campo de las tecnologías inalámbricas. Como parte de mi trabajo, tuve que lidiar con Filtros de Kalman, principalmente para aplicaciones de seguimiento.
La crítica constructiva siempre es bienvenida. Agradecería mucho sus comentarios y sugerencias. Por favor envíeme un correo electrónico.
Acerca de la versión en Español
Mi nombre es Eduardo Ostera, de Argentina. Soy ingeniero electrónico graduado en la UNR (Universidad Nacional de Rosario). Trabajé durante 10 años en el desarrollo de software y hardware de balanzas electrónicas. Actualmente trabajo en el INTI (Instituto Nacional de Tecnología Industrial) en el laboratorio de Aprobación de Modelo de balanzas, en el área de Metrología Legal.
Al igual que Alex, tuve que lidiar con Filtros de Kalman, en mi caso para aplicaciones en metrología.
Acerca del filtro de Kalman
La mayoría de los sistemas modernos están equipados con numerosos sensores que proporcionan una estimación de variables ocultas (desconocidas) basadas en series de mediciones. Por ejemplo, el receptor GPS proporciona la estimación de la ubicación y la velocidad, donde la ubicación y la velocidad son las variables ocultas y el tiempo diferencial de llegada de las señales del satélite son las mediciones.
Uno de los mayores desafíos del sistema de seguimiento y control es proporcionar una estimación exacta y precisa de las variables ocultas en presencia de incertidumbre. En el receptor GPS, la incertidumbre de las mediciones depende de muchos factores externos como el ruido térmico, los efectos atmosféricos, los ligeros cambios en las posiciones del satélite, la precisión del reloj del receptor y muchos más.
El Filtro de Kalman es uno de los algoritmos de estimación más importantes y comunes. El filtro de Kalman produce estimaciones de variables ocultas basadas en mediciones inexactas e inciertas. Además, el filtro de Kalman proporciona una predicción del estado futuro del sistema, basado en estimaciones pasadas.
El filtro lleva el nombre de Rudolf E. Kalman (19 de mayo de 1930 – 2 de julio de 2016). En 1960, Kalman publicó su famoso artículo que describe una solución recursiva al problema de filtrado lineal de datos discretos.
Hoy en día, el filtro Kalman se utiliza en objetivos de seguimiento (radar), sistemas de localización y navegación, sistemas de control, gráficos por computadora y mucho más.
Las siguientes secciones explican el funcionamiento del Filtro de Kalman mediante ejemplos prácticos que demuestran sus conceptos fundamentales. Los ejemplos comienzan con conceptos básicos y avanzan paso a paso para mostrar cómo funciona el filtro. El desarrollo matemático comienza con ecuaciones unidimensionales para simplificar la comprensión antes de pasar al caso general multidimensional.